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1. Reactions in series 

2. Reactions in parallel 

3. Complex systems of reaction: series and parallel 
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So, for example, for a reaction where  A ! B 
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… and for a reaction where A ! B 
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    i = 1, 2, ..., R  (reactions) 

    j = 1, 2, ..., S  (species) 

    "ij= stoichiometric coefficient of species j in  

           reaction i ; negative if j is a reactant; positive  

           if j is a product 

    mj = order of the reaction with respect to  

            the jth species 
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The reactor design equations derived for the single 
reaction case are applicable to each of the species 
present in the multiple reactions, so we do not have to 
re-derive them! 

All we have to do is to account for the presence of each 
species in all the reactions … 
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One design equation is created for each of the species 
present in the system. 

We end up with a system of n simultaneous equations in 
n unknowns (the concentrations of the species as a 
function of time). 

In some cases the yield/selectivity of a species is non-
monotonic, i.e. it has a maximum value in the range of 
X = 0.0 … 1.0. 

© R. Bañares-Alcántara 

(Aug 2013) 

3-14 © R. Bañares-Alcántara 

(Aug 2013) 

3-15 

In the case of a PFR we get a system of simultaneous 
differential equations. 

Let’s solve a system of two 1st order reactions in series 
(the simplest case).  The same method is applicable to 
more complicated systems, i.e. more than two 
reactions of any order.    
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•! Reaction system: 

•! Mole Balances for PFR: 
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Solve eqn. 1 (separable) 

Solve eqn. 2.  Subst. CA into eqn. 2; 

not separable, use Integrating Factor 

and get: 

To get CC we could substitute CB into eqn. 3 and solve, but we 

notice that (CA0-CA) = CB + CC.  Hence, solve for CC and get: 
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Dimensionless plot 

CA/CA0, CB/CA0 , CC/CA0 

  vs. 

k1 # 
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There is an optimum # to maximise CB 

substitute #opt into expression for CB to get CBmax 
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In the case of a CSTR operating at steady-state we get 
a system simultaneous algebraic equations. 

Let’s solve a system of two 1st order reactions in series 
(the simplest case). The same method is applicable to 
more complicated systems, i.e. more than two 
reactions of any order. 
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•! Reaction system: 

•! Mole Balances for CSTR: 

•! Solve: 
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Dimensionless plot 

CA/CA0, CB/CA0 , CC/CA0 

  vs. 

k1 # 
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There is an optimum # to maximise CB 

substitute #opt into expression for CB to get CBmax 
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The behaviour of PFRs and CSTRs operating with 
multiple reactions in series is qualitatively similar. 

But are PFR and CSTR identical with respect to multiple 
reactions? 
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The PFR gives higher 

yield than the CSTR 

(for positive order 

reactions). 
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Multiple reactions in parallel are addressed identically to 
reactions in series: 

One design equation is created for each of the species 
present in the system. 

Again, we end up with a system of n simultaneous 
equations in n unknowns (the concentrations of the 
species as a function of time):  PFRs result in a 
system of simultaneous differential equations, and 
steady-state CSTRs in a system of simultaneous 
algebraic equations. 
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•! Reaction system: 

•! Mole Balances for PFR: 
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Solve eqn. 1 (separable) 

Solve eqn. 2:  subst. CA into eqn. 2; 

It is separable, integrate and get: 

Similarly, eqn. 3 is separable, solve and get: 

The selectivity to form B is: 
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Dimensionless plot 

CA/CA0, CB/CA0 , CC/CA0 

  vs. 

(k1+ k2) #$
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•! Reaction system: 

•! Mole Balances for CSTR: 

•! Solve: 
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Selectivity to form B 

identical to PFR case: 
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Dimensionless plot 

CA/CA0, CB/CA0 , CC/CA0 

  vs. 

(k1+ k2) #$
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Similarly to the case of multiple reactions in series, 
PFRs and CSTRs are qualitatively similar but 
quantitatively different. 
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For parallel, irreversible, 

first-order reactions: 

•! the # is smaller in a PFR 

•! selectivity is identical 
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Parallel reaction system: 

Selectivity  

(instantaneous): 

k1 = 1; k2 = 4; k3 = 2;  

CA0 = 2.0 

Plotting sC vs. X  

(with CA = CA0 [1 - X] ) 

sC,max @ Xmax = 0.646 

  CA,max = 0.708 

   sC,max = 0.586 
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•! Series reactions 

–! If an intermediate product is desired: there is an optimum # for Ymax.   

 PFR gives higher Ymax if reactions have positive order,  

 CSTR gives higher Ymax if reactions have negative order 

–! If a final product is desired: 

 PFR requires shorter time and produces less intermediates (for +ve order) 

•! Parallel reactions 

–! Reactions with same order: PFR and CSTR give equal Selectivity 

•! Series-parallel reactions 

–! Solve mass balance equations! 
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For systems of multiple reactions we must solve R simultaneous 

mass balance equations. 

Series reactions 

•! There is:  

–! an optimum residence time in a continuous reactor or  

–! an optimum reaction time in a batch reactor  

to maximise yield of an intermediate. 

•! The PFR will always give a higher maximum yield of an 

intermediate for positive-order kinetics. 

Parallel reactions 

•!  # is smaller in a PFR, selectivity is identical in PFR and CSTR. 
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