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•! Develop the mole balance / design equations for  
–! Batch reactors 

–! CSTR (continuous stirred tank reactors) 

–! PFR (plug flow reactors) / PFTR (plug flow tubular reactors) 

–! PBR (packed bed reactors) 

•! Size different types of reactors (volume and/or residence time) 

•! Design reactor systems (series of reactors) 

•! Compare and select between CSTR and PFR  

Sources for isothermal reactors 

•! Schmidt: chapters 2 and 3 

•! Fogler: sections 1.2-1.4, 2.2-2.5  
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We start by modelling the simplest type of reaction 
system: 

–! one reaction 

–! isothermal 

–! occurring in one fluid phase  

–! inside a single idealised reactor. 

We will relax each of these constraints in the next 
lectures. 
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Chemical reactors 

  Batch 

  Continuous flow 

   Continuous Stirred Tank Reactor (CSTR) 

   Plug Flow Reactor (PFR) 

   Packed Bed Reactor (PBR) 

photographs of real reactors:  

http://www.engin.umich.edu/~cre/01chap/html/reactors/

photos.htm 
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ACCUMULATION   =   IN  -  OUT  +  GENERATION   [mol/T] 

Generation term: 

•! in a spatially uniform system: 

•! when properties (CJ, T) are a function of position:    
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We will derive the design equations for  

–! Batch 

–! CSTR 

–! PFR 

–! PBR 

and solve them for 1st and 2nd order reactions. 

(remember that we are assuming one reaction, a single fluid phase, 
and isothermal conditions) 
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Batch reactor 

(from [Fogler 05]) 

Batch reactor stirring apparatus 

(from [Fogler 05]) 
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1. Fundamentally unsteady, all variables change in time. 

2. Mixture is assumed to be perfectly mixed,  

 i.e. uniform (in space) CJ and T 

     

     

from GMB 

equation 
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1st order reaction 

into design eqn: 

     

     

2nd order reaction 

into design eqn: 

     

     
separate 

integrate 

solve 

separate 

integrate 

solve 
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The typical behaviour of a first order reaction in a batch reactor is 

(plotting CA/CA0 vs kt): 
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Feed 

Product 

Cutaway view of CSTR 

(from [Fogler 05]) 
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1. Assume perfect mixing, i.e. uniform properties. 

2. Assume steady state, i.e. props. constant in time. 

3. Note: discontinuity where feed is introduced! 

     

     

from GMB 

equation 

Feed 

Product 
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Feed 

Product 
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Feed 

Product 
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1st order reaction 

into steady state design eqn: 

     

     

Feed 

Product 

solve 
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2nd order reaction 

into steady state design eqn: 

     

     

Feed 

Product 

solve 

only +ve root makes sense; 

also sqrt(4k!CA0+1) > 1 
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The PFR design equation is going to be derived as an 
analogy to the Batch reactor design equation this 
time (rather than from first principles, i.e. the GMB). 

The result is, of course, the same. 

© R. Bañares-Alcántara 

(Aug 2013) 

2-24 

aka Plug Flow Tubular Reactor (PFTR) 

1. Assume velocity profile of plug or piston flow (high 

turbulence; true at high flow rates, i.e. Re > 104)  

–! uniform FJ and uniform properties over cross-section normal to flow 

–! no axial mixing (not true in turbulent flow!!!) 

2. Steady state operation (but properties change along the PFR!). 

Note that, for constant density, a volume element in a PFR 
behaves as a batch reactor moving along z, i.e. there is a 
correspondence between 

•! time in a batch reactor and  

•! position in a PFR. 

Feed Product 

dV=Adz 

z+dz z 
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       Batch      PFR 

Feed Product 

dV=Adz 

z+dz z 
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1st order reaction 

into design eqn: 

     

     

separate 

integrate 

solve 

Feed Product 

dV=Adz 

z+dz z 
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The typical behaviour of a first order reaction in a PFR is 

(plotting CA/CA0 vs k!): 
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2nd order reaction 

into design eqn: 

     

     

separate 

integrate 

solve 

Feed Product 

dV=Adz 

z+dz z 
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1. Involves fluid-solid heterogeneous reactions, i.e. catalysed. 

2. Reaction rate, rA’ [mole s-1 kgcat-1], based on mass of catalyst, 
W, rather than on reactor volume, V. 

Derivation of design equation similar to PFR, but in terms of W: 

    in terms of X: 

         

        integrating (X = 0 @ W = 0): 

Feed Product 

!W 

W+DW W 
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Batch 

CSTR 

PFR 

PBR 

differential 

form 

algebraic 

form 

integral 

form 
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Two examples of reactor design: 

•! calculation of the required CSTR volume to achieve an 
80% conversion with a 3rd order reaction. 

•! calculation of the required PFR volume (and number of 
tubes) to achieve an 80% conversion with a 1st order 
reaction.  A plot of conversion as a function of 
reactor length is also produced.  
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Design eqn = fn (r) 

r = fn (CA, CB, ...) 

CJ = fn (X) = fn (stoichiometry) 
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Gas phase rxn @ T0=50 C; P0=10 atm; F0=8 mole/s (equimolar in A and B). 

What should be the CSTR volume to achieve a conversion of 0.8? 

k = 5 mol dm-3 s-1 
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Calculate VPFR to produce 100 kTon/yr of ethylene from pure ethane@ 

T0=1100 K and P0 = 5 atm.  Assume a conversion of 80%. 

k1000 K = 0.0835 s-1; E = 79.3 kcal/gmole  
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To plot: 
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Are CSTR and PFR equivalent? 

For positive order reactions PFRs are more efficient 
than CSTRs, i.e.  

•! PFRs require a smaller volume to achieve the same 
conversion, or 

•! PFRs achieve a larger conversion given a fixed volume. 

There are, however, advantages of CSTRs over PFRs, 
but we will see them in future lectures. 
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For a 1st order reaction: 

   CSTR     PFR 

      X 

"CSTR/"PFR 
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To size a reactor (get its V or ") we need FA0 and r = fn(X) 

•! for CSTR: 

•! for PFR: 

1/r 

X 

1/r 

X 
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For the same FA0, the PFR requires a smaller volume (V) than the 
CSTR to achieve the same conversion (X). 

Note: observation valid for isothermal reactions of order greater than zero. 

This is because the fresh feed to the CSTR is immediately diluted 
to exit concentration, hence there is a lower r,  hence larger 
volumes or longer residence times are necessary. 

1/r 

X 

1/r 

X 

1/r 

X 
CSTR PFR 
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Spherical reactors  

connected in series 

(from [Fogler 05]) 
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CA0 

CA1 

CA2 

Ca(n-1) 

CAn 

… 
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Conversion in each reactor is based on X up to a specified point.   

To achieve the same conversion: 

•! VCSTR-1 + VCSTR-2  <  VCSTR-single 

•! it is immaterial to use 2 PFR in series or a single PFR 

1/r 

X 

1/r 

X 

1/r 

X 
1 

2 

1/r 

X 
1 2 

1/r 

X 

1 2 

1/r 

X 
1 

2 
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We can model a PFR as a series of CSTRs, this is because we can 

understand a PFR as 

1/r 

X 
PFR 

1/r 

X 
CSTRs 
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CSTRs and PFRs can, of course, be connected in series: 

PFR1 + CSTR + PFR2 CSTR1 + PFR + CSTR2 

1/r 

X 
2 1 

3 

1/r 

X 
1 2 

3 
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•! General Mole Balance Equation 

•! Batch reactors 

•! CSTR 

•! PFR 

•! PBR 
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1/r 

X 
2 1 

3 
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